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Abstract. In this Rapid Note, we show that the problem of growth of molecular superlattice in a fully
hydrated dipalmitoylphosphatidylcholine (DPPC) membrane during the gel-to-subgel phase transformation
process is a problem of time scale. There are, in fact, two time scales. The first is an “integrated” or, in
some sense, stagnant time scale, that reflects the well-known isotropic growth effect in the d-dimensional
space, but assigns the problem to be still in a category of Debye relaxation kinetics. The fraction of old
(parent) phase does not suit the Paley-Wiener criterion for relaxation functions, and the time behavior is
exclusively due to the geometrical characteristics of the kinetic process. The second (multi-instantaneous)
time scale, in turn, is recognised to be a “broken” (fractional time derivative) or memory-feeling (dynamic)
scale, which carries some very essential physics of the phenomenon under study, and classifies the problem
to be of non-Debye (viz., stretched exponential) nature. It may, in principle, contain all the important
effects, like small scale coexistence, presence of collisions between domains, with possible annihilation and
creation of domain boundaries, and/or a headgroup packing, hydration against lipid mobility behavior,
and finally, a multitude of quasi-crystalline states. It turns out, that within the range of validity of the
dynamic scale approximation proposed, the criterion for relaxation functions is very well fulfilled.

PACS. 82.60.Nh Thermodynamics of nucleation – 64.60.-i General studies of phase transitions – 64.70.-p
Specific phase transitions

A recent comment [1], being a prompt response to some
experimental study [2], showed that there is now exper-
imental agreement that the gel-to-subgel phase transi-
tion kinetics in a fully hydrated dipalmitoylohosphatidyl-
choline (DPPC) model membrane is anomalous, and the
agreement even extends to the surprisingly small numer-
ical value of 1−1.3 for the effective dimensionalities of
this phenomenon when interpreted in terms of Avrami-
Kolmogorov (A-K) kinetics. However, both those, com-
ment [1] as well as experimental study on the growth of
molecular superlattice [2], noted that it is an outstanding
problem how to understand this anomalous dimensional-
ity theoretically.

The classical nucleation-and-growth mechanism, due
to Avrami and Kolmogorov (and/or, Mehl Johnson,
well-known, e.g. in physical metallurgy; cf. [1–4], and
Refs. therein) of this and related [5,6] typically domain-
wise [7] processes has been proposed to explain, in a simple
quantitative way, the kinetic behavior of the transition.
From those studies, it follows [1–4] that the subtransi-
tion depends upon the dimensionality d of the isotropic
Euclidean or (possibly) non-Euclidean lipid spaces, but
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under the experimental circumstances described [1,3], cer-
tain questions may arise, e.g., whether that volume kinet-
ics (d = 3) do accurately reflect the kinetics of the sub-
transition [2] or the process has to be reconsidered in terms
of an isotropic growth with d = 2, or (perhaps) between
d = 3 and d = 2, i.e. with some d, being even of noninte-
ger value [4–6]? As we know (cf. [1–6], and Refs. therein)
A-K theory predicts that the fraction of untransformed
(parent) phase, Y (t) (equal to 1−X(t) in [1]), is going to
decrease in the course of time as

Y (t) ' exp
[
−
( t′
τc

)]
, (1)

where τc represents the characteristic (relaxation) time,
and the time, in which the so-called “extended volume”
[4–6] evolves, reads

t′ =

∫ t

0

t1
d−1dt1 =

1

d
td, 1 ≤ d ≤ 3, (2)

which means, that, from the mathematical viewpoint, the
only operation which has been performed, is a time scale
augmenting (td), but this kind of transformation remains
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invariant under t → const × t, also for d = 1. (This is
just exclusively a time variable expansion due to isotropic
“geometrically controlled” as well as unimpeded growth
[6]; note that if d = 1, then t′ = t, exactly (see, Eq. (2)).
Let us recall that this kind of (Debye or simple expo-
nential) relaxation, explicitly given by (1) has, however,
proved to be unphysical though very well applicable, since
it does not fulfill the Paley-Wiener criterion, stating ex-
plicitly bounds for physically acceptable relaxation func-
tions (for long times) [8], so that, as was expected [1,3],
it does not reflect all the subtleness of the subtransition,
since A-K theory is not really satisfying.

Thus, there is no doubt that we have to seek another
way towards explaining the problems (inevitably related
to the time scale [4]). It would be possible to do, if we re-
alize that the nucleation-and-growth mediated transition
is a time-dependent process that can be mapped onto a
Random Walk (RW) of possibly anomalous character.
(Some arguments have been provided, e.g. in [4,5], for
the existence of a “sequential” mechanism, in which the
transition is continuous throughout the system, which
means, that a possibly continuous spectrum of metastable
crystalline states is realized, or equivalently, a multi-
instantaneous time scale seems to play a role.) To be more
specific, let us notice that in our case, i.e. when the sub-
gel transition is realized, one has to carry the system to-
wards a lower temperature limit, which causes some ap-
parent changes in the membrane structure and a certain
loss of the number of the degrees of freedom for the in-
dividual macromolecules and their assemblies, even [2,4].
In the high temperature regime, in turn, one detects a
well-intermingled (random) structure, with a maximum
number of the degrees of freedom, where the existence of
the molecular superlattice as well as the second [2] specific
hydrocarbon chains’ sublattice, both of them being (more
or less) commensurable and containing some respective
amount of water penetrants, are easily observed. When
lowering the temperature, the structure goes to a regime of
sol-like phase, in which some discontinuities due to lesser
mobility of hydrocarbon chains as well as caused by water
dehydration appear [3,5]. In the correspondence to what
has been written above, one may expect that above the
temperature (percolation) transition point, the dynamics
is well described by the normal (linear) RW as well as
the Debye (simple exponential) kinetics. At the transition
point (and slightly below), however, because of some ap-
pearance of the above mentioned constraints, such a de-
scription is no longer valid, since one has practically to do
with much slower dynamics, being presumably described
in appropriate way by means of the anomalous (subdif-
fusive) RW and the non-Debye kinetics corresponding to
it [6,8,9]. Since the process is realized in a domainwise
manner, one can think of the realization thereof either in
a naive or in a formal (more focused) way. In the former,
we have to accept that the process relies on, say, annihi-
lation and creation of domains and their boundaries (typ-
ically, the bigger grains “eat” the smaller ones, which is
often subjected to a grain-boundary free energy (curvature
driven) decrease mechanism; cf. [6], and Refs. therein), so

that it resembles a motion of randomly hopping walker.
In the latter, we have to make use of a similarity of the
problem in question, solved in a space of the grain (do-
main) boundary area (which is a stochastic variable; see
also a metallurgical example therein [6,7]), and a prob-
lem of randomly walking tracer in its position space. This
problem is called the anomalous Random Walk problem
in the standard literature (see [9], and Refs. therein) and
seems to be well elaborated.

The tissue recalled is also quite well understood for
the gel or gel-like phases, and it is generally located
in a class of (dynamic) percolation problems, so that a
Random Walk on the percolation (Swiss-cheese-like struc-
ture) must be invoked. A solution of the problem leads to
have an “excess quantity”, say∆, which makes a difference
between a normal and anomalous RW-s, since the former
is realised in an isotropic (well-mixed or sufficiently inter-
mingled) collision space, whereas the latter proceeds on a
more crumbled substrate. In this case, the mean-squared
displacement 〈x2(t)〉 of a RW-particle is found to scale
with (arbitrary) time variable t as

〈x2(t)〉 ∼ t2/2+∆, t� 1, (3)

but preferentially at the subgel transition point, since
above it one provides a standard RW problem solution,
like 〈x2(t)〉 ∼ t1 [10]. Here, ∆, where 0 < ∆ < 1 (also)
contains typically all the basic continuous phase transition
characteristics for the percolation (gel phase formation)
process, i.e. the process which is a transition between an
infinite incipient cluster and some finite clusters contain-
ing phase (the transition process resembles to some extent
the paramagnetic-ferromagnetic phase transition, but is
equally well assigned to the gel-sol phase change; cf. [3]
for a verbal picture of the subtransition, which seems to
be very much consistent with the argumentation presented
above). By the way, bear in mind that an exponent, dw,
where dw = 2 +∆, is usually named the fractal dimension
of RW, and because dw > 2, the anomalous RW is said to
be subdiffusive or anomalously slow [10].

For such a system, the subdiffusive RW kinetic phe-
nomenon is equivalent to a fractional relaxation process
of order 0 < δ < 1 (cf., [7], and Refs. therein), where
δ = 1

1+(∆/2) (see relation (3), too), so that the correspond-

ing relaxation equation can be written as [11]

Y (t′) + τca
dδ

dt′δ
Y (t′) = 0, (4)

where τca is recognized to represent another characteris-

tic relaxation time, proportional to τc, and dδ

dt′δ
stands

for a fractional time derivative, given by the Weyl’s
integral operator (cf. [12] for mathematical details). No-
tice, that if δ were equal to 1, then (4), being of the form
Y (t′)+τca

d
dt′Y (t′) = 0, would produce a “classical” Debye

solution of type (1, 2). (In general, one has δ ≤ 1, however.
It is necessary to stress, perhaps again, that if δ < 1, one
recognizes a subdiffusive RW, which corresponds to the
non-Debye relaxation process. Otherwise, i.e. when δ = 1
one gets the “normal” RW.)
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The most important thing is, that now the asymp-
totic solution of (4) is not a simple (viz., Debye) exponen-
tial, but a stretched (i.e., non-Debyean) exponential of the
form, namely

Y (t) ' exp
[
−
( t′

τca

)δ]
, (5)

where t′ is given by (2). In general, the solutions of (4) be-
long to a class of Mittag-Leffler functions [11,12], i.e. they
obey very well the Paley-Wiener criterion [8]; specifically,
they are either stretched exponentials or algebraically de-
caying time variable functions [8,11]. Solution (5), for-
mally taken with (2), apparently changes possibilities of
interpretation(s) of experimental results obtained [1–5] be-
cause, at the transition point, and perhaps slightly below,
the effective and readily fractional dimensionality is not
d, being typically of integer value (see Eqs. (1, 2)), but
δd. For example, now, one should be able to elucidate,
why the effective dimensionalities of the subtransition in
DPPC are about 1−1.3, or other dimensionalities mea-
sured for some prerequisites of lyotropic liquid crystals
(and polymorphic [2,4,6] phase transformations custom-
ary assigned to them) [4,5] can even be less than one.
Namely, notice, that if, e.g., one may have d = 2 [1–5],
and if one reasonably assumes that a maximum value of
δ becomes δ ≈ 2/3 [9,10], then one can get δd ∼= 1.333,
which approaches quite well the measured maximum value
of 1.3 mentioned in [1–3]. There are, however, theoretical
and experimental evidences [9,10,13], that mostly for 2d
(order-disorder, in particular, solidification vs. melting)
systems, ∆ can exceed one, i.e. ∆ > 1, so that in princi-
ple, a value of δd less than 1.3, or even being (apparently)
smaller than or, at most, equal to one can probably be
reached (even, if d = 3 will be taken).

Another problem, however, remains. It concerns now
a technical possibility as well as reliability of measuring
∆ (recall that δ = 1

1+(∆/2) ), which is usually expressed

by the (standard) critical exponents β, ν and µ (cf. [6,
10]) of the percolating or, in particular, gelling systems

[10]. It can be shown quite rigorously, that ∆ = µ−β
ν ,

where µ, β as well as ν can be taken from basic scaling
relations, characterizing the gelling system near criticality,
when an infinite ’spanning’ cluster may be formed [9,10].
The issue of measuring the critical exponents µ, β as well
as ν [10] can be addressed to experimentalists, who would,
hopefully, pick up them for their systems that they wish
to investigate.

In a final word, let us notice that a result, qualita-
tively similar to (5), can be recovered, when one presumes
the standard A-K description of the subtransition [2], but
in terms of the fractal-like (“long-tail”) kinetics [9], i.e.
with the kinetic coefficient being inverse powerly time-
dependent; cf. [6] for details. Although in [6] no very well-
argumented microscopic picture of the process was offered,
it seems to be in a striking conceptual agreement, e.g. with
findings of Tenchov et al. [4].
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